
Concurrency

Motivation

• Operating systems (and application programs)
often need to be able to handle multiple things
happening at the same time
– Process execution, interrupts, background tasks,

system maintenance

• Humans are not very good at keeping track of
multiple things happening simultaneously

• Threads are an abstraction to help bridge this
gap

Why Concurrency?

• Servers
– Multiple connections handled simultaneously

• Parallel programs
– To achieve better performance

• Programs with user interfaces
– To achieve user responsiveness while doing

computation

• Network and disk bound programs
– To hide network/disk latency

Déjà vu?

• Didn’t we learn all about concurrency in CSE
332/333?
– More practice

• Realistic examples, especially in the project

– Design patterns and pitfalls
• Methodology for writing correct concurrent code

– Implementation
• How do threads work at the machine level?

– CPU scheduling
• If multiple threads to run, which do we do first?

Definitions

• A thread is a single execution sequence that
represents a separately schedulable task
– Single execution sequence: familiar programming

model
– Separately schedulable: OS can run or suspend a

thread at any time

• Protection is an orthogonal concept
– Can have one or many threads per protection

domain

Threads in the Kernel and at User-Level

• Multi-threaded kernel
– multiple threads, sharing kernel data structures,

capable of using privileged instructions
– OS/161 assignment 1

• Multiprocess kernel
– Multiple single-threaded processes
– System calls access shared kernel data structures
– OS/161 assignment 2

• Multiple multi-threaded user processes
– Each with multiple threads, sharing same data

structures, isolated from other user processes

Thread Abstraction

• Infinite number of processors

• Threads execute with variable speed
– Programs must be designed to work with any schedule

Programmer vs. Processor View

Possible Executions

Thread Operations

• thread_create(thread, func, args)
– Create a new thread to run func(args)
– OS/161: thread_fork

• thread_yield()
– Relinquish processor voluntarily
– OS/161: thread_yield

• thread_join(thread)
– In parent, wait for forked thread to exit, then return
– OS/161: assignment 1

• thread_exit
– Quit thread and clean up, wake up joiner if any
– OS/161: thread_exit

Example: threadHello

#define NTHREADS 10
thread_t threads[NTHREADS];
main() {
 for (i = 0; i < NTHREADS; i++) thread_create(&threads[i], &go, i);
 for (i = 0; i < NTHREADS; i++) {
 exitValue = thread_join(threads[i]);
 printf("Thread %d returned with %ld\n", i, exitValue);
 }
 printf("Main thread done.\n");
}
void go (int n) {
 printf("Hello from thread %d\n", n);
 thread_exit(100 + n);
 // REACHED?
}

threadHello: Example Output

• Why must “thread returned”
print in order?

• What is maximum # of
threads running when thread
5 prints hello?

• Minimum?

Fork/Join Concurrency

• Threads can create children, and wait for their
completion

• Data only shared before fork/after join
• Examples:
– Web server: fork a new thread for every new

connection
• As long as the threads are completely independent

– Merge sort
– Parallel memory copy

bzero with fork/join concurrency
void blockzero (unsigned char *p, int length) {
 int i, j;
 thread_t threads[NTHREADS];
 struct bzeroparams params[NTHREADS];

// For simplicity, assumes length is divisible by NTHREADS.
for (i = 0, j = 0; i < NTHREADS; i++, j += length/NTHREADS) {
 params[i].buffer = p + i * length/NTHREADS;
 params[i].length = length/NTHREADS;
 thread_create_p(&(threads[i]), &go, ¶ms[i]);
 }
 for (i = 0; i < NTHREADS; i++) {
 thread_join(threads[i]);
 }
}

Thread Data Structures

Thread Lifecycle

Implementing Threads: Roadmap

• Kernel threads
– Thread abstraction only available to kernel
– To the kernel, a kernel thread and a single

threaded user process look quite similar

• Multithreaded processes using kernel threads
(Linux, MacOS)
– Kernel thread operations available via syscall

• User-level threads
– Thread operations without system calls

Multithreaded OS Kernel

Implementing threads

• Thread_fork(func, args)
– Allocate thread control block
– Allocate stack
– Build stack frame for base of stack (stub)
– Put func, args on stack
– Put thread on ready list
– Will run sometime later (maybe right away!)

• stub(func, args): OS/161 mips_threadstart
– Call (*func)(args)
– If return, call thread_exit()

Thread Stack

• What if a thread puts too many procedures on
its stack?
– What happens in Java?

– What happens in the Linux kernel?

– What happens in OS/161?

– What should happen?

Thread Context Switch

• Voluntary
– Thread_yield

– Thread_join (if child is not done yet)

• Involuntary
– Interrupt or exception

– Some other thread is higher priority

Voluntary thread context switch

• Save registers on old stack
• Switch to new stack, new thread
• Restore registers from new stack
• Return
• Exactly the same with kernel threads or user

threads
– OS/161: thread switch is always between kernel

threads, not between user process and kernel
thread

OS/161 switchframe_switch

/* a0: old thread stack pointer
 * a1: new thread stack pointer */

/* Allocate stack space for 10 registers. */
 addi sp, sp, -40

 /* Save the registers */
 sw ra, 36(sp)
 sw gp, 32(sp)
 sw s8, 28(sp)
 sw s6, 24(sp)
 sw s5, 20(sp)
 sw s4, 16(sp)
 sw s3, 12(sp)
 sw s2, 8(sp)
 sw s1, 4(sp)
 sw s0, 0(sp)

 /* Store old stack pointer in old thread */
 sw sp, 0(a0)

 /* Get new stack pointer from new thread */
 lw sp, 0(a1)
 nop /* delay slot for load */

/* Now, restore the registers */
 lw s0, 0(sp)
 lw s1, 4(sp)
 lw s2, 8(sp)
 lw s3, 12(sp)
 lw s4, 16(sp)
 lw s5, 20(sp)
 lw s6, 24(sp)
 lw s8, 28(sp)
 lw gp, 32(sp)
 lw ra, 36(sp)
 nop /* delay slot for load */

 /* and return. */
 j ra
 addi sp, sp, 40 /* in delay slot */

x86 switch_threads

Save caller’s register state
NOTE: %eax, etc. are ephemeral
pushl %ebx
pushl %ebp
pushl %esi
pushl %edi

Get offsetof (struct thread, stack)
mov thread_stack_ofs, %edx
Save current stack pointer to old

thread's stack, if any.
movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Change stack pointer to new
thread's stack

this also changes currentThread
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi
popl %esi
popl %ebp
popl %ebx
ret

A Subtlety

• Thread_create puts new thread on ready list

• When it first runs, some thread calls
switchframe
– Saves old thread state to stack

– Restores new thread state from stack

• Set up new thread’s stack as if it had saved its
state in switchframe
– “returns” to stub at base of stack to run func

Two Threads Call Yield

Involuntary Thread/Process Switch

• Timer or I/O interrupt
– Tells OS some other thread should run

• Simple version (OS/161)
– End of interrupt handler calls switch()

– When resumed, return from handler resumes
kernel thread or user process

– Thus, processor context is saved/restored twice
(once by interrupt handler, once by thread switch)

Faster Thread/Process Switch

• What happens on a timer (or other) interrupt?
– Interrupt handler saves state of interrupted

thread

– Decides to run a new thread

– Throw away current state of interrupt handler!

– Instead, set saved stack pointer to trapframe

– Restore state of new thread

– On resume, pops trapframe to restore interrupted
thread

Multithreaded User Processes (Take 1)

• User thread = kernel thread (Linux, MacOS)
– System calls for thread fork, join, exit (and lock,

unlock,…)

– Kernel does context switch

– Simple, but a lot of transitions between user and
kernel mode

Multithreaded User Processes
(Take 1)

Multithreaded User Processes (Take 2)

• Green threads (early Java)
– User-level library, within a single-threaded

process

– Library does thread context switch

– Preemption via upcall/UNIX signal on timer
interrupt

– Use multiple processes for parallelism
• Shared memory region mapped into each process

Multithreaded User Processes (Take 3)

• Scheduler activations (Windows 8)
– Kernel allocates processors to user-level library
– Thread library implements context switch
– Thread library decides what thread to run next

• Upcall whenever kernel needs a user-level
scheduling decision
• Process assigned a new processor
• Processor removed from process
• System call blocks in kernel

Question

• Compare event-driven programming with
multithreaded concurrency. Which is better in
which circumstances, and why?

