Concurrency

Motivation

e Operating systems (and application programs)
often need to be able to handle multiple things
happening at the same time
— Process execution, interrupts, background tasks,

system maintenance

* Humans are not very good at keeping track of
multiple things happening simultaneously

* Threads are an abstraction to help bridge this
gap

Why Concurrency?

Servers
— Multiple connections handled simultaneously

Parallel programs
— To achieve better performance

Programs with user interfaces

— To achieve user responsiveness while doing
computation

Network and disk bound programs
— To hide network/disk latency

Déja vu?

* Didn’t we learn all about concurrency in CSE
332/3337?

— More practice
* Realistic examples, especially in the project

— Design patterns and pitfalls
* Methodology for writing correct concurrent code

— Implementation
e How do threads work at the machine level?

— CPU scheduling

* If multiple threads to run, which do we do first?

Definitions

* Athread is a single execution sequence that
represents a separately schedulable task

— Single execution sequence: familiar programming
model

— Separately schedulable: OS can run or suspend a
thread at any time

* Protection is an orthogonal concept

— Can have one or many threads per protection
domain

Threads in the Kernel and at User-Level

e Multi-threaded kernel

— multiple threads, sharing kernel data structures,
capable of using privileged instructions

— 0S/161 assighment 1
* Multiprocess kernel
— Multiple single-threaded processes
— System calls access shared kernel data structures
— 0S/161 assignment 2
* Multiple multi-threaded user processes

— Each with multiple threads, sharing same data
structures, isolated from other user processes

Thread Abstraction

* Infinite number of processors

* Threads execute with variable speed
— Programs must be designed to work with any schedule

Frogrammer Absiraction Fhyaical Reality

IS ES FS RS KSR EEI N KRR
Pm-:e-a5:-r5§1§g§3_§_ﬂ§5§ ‘E

Rumning Heady
Threads Threads

Programmer vs.

Programmer’'s Possible
View Exacution
a1
= x & |: y = x & 1:
A L L B
r= g% Oy, r = x & Oy,

Pozssibla
Exacution
g2

= x & |:

Theepd B papended
CehEr thraad|virun
Fharep] o revumed

¥ = e R
rmx & Hy;

Processor View

Fogsibie
Exaecubon
&3

Ew=m x ¥ 1
B -

Thread is suspeEnded
Drthar threpoklis] rumn
Thresd is regyrmesd

T = x & 5y

Possible Executions

Onea Exacution

Thiead ©

Thiead 2

Thiead

Ancihar Exacufion

Thiead ©
meadz [| O 0O
Thread 3 [] O [

Another Execution

Theead 1

Theesd 2

Thees 3

Thread Operations

thread create(thread, func, args)

— Create a new thread to run func(args)
— 0S/161: thread_fork

thread vyield()
— Relinquish processor voluntarily

— 0S/161: thread_yield

thread_join(thread)
— In parent, wait for forked thread to exit, then return
— 0S/161: assignment 1

thread_exit
— Quit thread and clean up, wake up joiner if any
— 0S/161: thread_exit

Example: threadHello

#define NTHREADS 10
thread_t threads[NTHREADS];
main() {
for (i=0; i < NTHREADS; i++) thread create(&threads[i], &go, i);
for (i = 0; i < NTHREADS; i++) {
exitValue = thread_join(threads]i]);
printf("Thread %d returned with %Ild\n", i, exitValue);

}
printf("Main thread done.\n");

}

void go (int n) {
printf("Hello from thread %d\n", n);
thread_exit(100 + n);
// REACHED?

}

threadHello: Example Output

bash-3.2S$./threadHello

* Why must “thread returned” relio tron thread 0

Hello from thread 1

print in order? ~ gty
. . Hello from thread 4
° What IS MaxXximum # Of Thread 1 returned 101

Hello from thread 5
Hello from thread

threads running when thread Goiig frem throad
Hello from thread

5 prlntS hE”O? Hello from thread

Hello from thread 9

~] 0O v N

e _° Thread 2 returned 102

¢ PV1IT1IFT1LJTT1‘? Thread 3 returned 103
Thread 4 returned 104

Thread 5 returned 105

Thread 6 returned 106

Thread 7 returned 107

Thread 8 returned 108

Thread 9 returned 109
Main thread done.

Fork/Join Concurrency

 Threads can create children, and wait for their
completion

* Data only shared before fork/after join

* Examples:

— Web server: fork a new thread for every new
connection
* As long as the threads are completely independent

— Merge sort
— Parallel memory copy

bzero with fork/join concurrency

void blockzero (unsigned char *p, int length) {
inti, j;
thread_t threads[NTHREADS];
struct bzeroparams params[NTHREADS];

// For simplicity, assumes length is divisible by NTHREADS.
for (i=0,j=0;i<NTHREADS; i++, j += length/NTHREADS) {
paramsli].buffer = p +i * length/NTHREADS;
params[i].length = length/NTHREADS;
thread create_ p(&(threads]i]), &go, ¶msli]);
}
for (i=0; i < NTHREADS; i++) {
thread_join(threads]i]);
}

Thread Data Structures

S harad
State

Code

Global
Variables

Heap

Thread 1's

Far-Thread Stata

Thraad Control

Stick
Infammatian

Sy

Thatea<l
Metadala

Block (TCH)

Heqgisters

Stack

Thread 2's
Far-Thread State

Thraad Control

Stack
I e e Do 1y

avedd
Hegisters

Thir éeaad
Metadata

Stack

Thread Lifecycle

Echezmiiler
Easumes Thraad
Thread Craalien S Thresd Bt
e —— HEE.W . |
1 Ben = e o e e e e e e e
sthread_creale|} athread_sxill]
Thread Wleld =oh e il

=z Luspends Thread
i sthread _yield(}

Evenit Doours Thread Waits far Exenl
Othar Theead Cals - s &thread _join(]
sthread_jain{] :

Implementing Threads: Roadmap

e Kernel threads
— Thread abstraction only available to kernel

— To the kernel, a kernel thread and a single
threaded user process look quite similar

 Multithreaded processes using kernel threads
(Linux, MacOS)

— Kernel thread operations available via syscall

* User-level threads
— Thread operations without system calls

Multithreaded OS Kernel

K e

Cogn Kerrwl Teraad 1 Kemel Theead 2 Baenel Theead 3 Procase 1 Procecs ¥
Elabals | Tce1 | [1e22 | TCH 3 | pce1 | PCE 2
Elack Etack Slack Elack stack

el I s N e N OO N O
Fropees 1 Proceces ¥

Uzar-Level Processes Thikas Thieas

Stack Sack

T Ciodi

Glohals Glabals

Heap Kizap

Implementing threads

* Thread_fork(func, args)
— Allocate thread control block
— Allocate stack
— Build stack frame for base of stack (stub)
— Put func, args on stack
— Put thread on ready list
— Will run sometime later (maybe right away!)

 stub(func, args): 0S/161 mips_threadstart
— Call (*func)(args)
— If return, call thread_exit()

Thread Stack

 What if a thread puts too many procedures on
its stack?
— What happens in Java?
— What happens in the Linux kernel?
— What happens in 0S/1617?
— What should happen?

Thread Context Switch

e VVoluntary

— Thread _yield

— Thread_join (if child is not done yet)
* Involuntary

— Interrupt or exception
— Some other thread is higher priority

Voluntary thread context switch

e Save registers on old stack

e Switch to new stack, new thread
* Restore registers from new stack
* Return

* Exactly the same with kernel threads or user
threads

— 0S/161: thread switch is always between kernel
threads, not between user process and kernel
thread

0S/161 switchframe_switch

/* a0: old thread stack pointer
* al: new thread stack pointer */

/* Allocate stack space for 10 registers. */
addi sp, sp, -40

/* Save the registers */
sw ra, 36(sp)
sw gp, 32(sp)
sw s8, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, O(sp)

/* Store old stack pointer in old thread */
sw sp, 0(a0)

/* Get new stack pointer from new thread */

lw sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers */

Iw s0, O(sp)
lw s1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw s8, 28(sp)
lw gp, 32(sp)
lw ra, 36(sp)
nop /* delay slot for load */

/* and return. */
jra
addisp, sp, 40 /* in delay slot */

x86 switch threads

Save caller’s register state # Change stack pointer to new

NOTE: %eax, etc. are ephemeral thread's stack

pushl %ebx # this also changes currentThread
pushl %ebp movl SWITCH_NEXT(%esp), %ecx
pushl %esi movl (%ecx,%edx,1), %esp

pushl %edi

Restore caller's register state.
Get offsetof (struct thread, stack) Popl %edi

mov thread_stack_ofs, %edx popl %esi
Save current stack pointer to old Popl %ebp
thread's stack, if any. popl %ebx

movl SWITCH_CUR(%esp), %eax ret
movl %esp, (%eax,%edx,1)

A Subtlety

* Thread create puts new thread on ready list

* When it first runs, some thread calls
switchframe
— Saves old thread state to stack
— Restores new thread state from stack

e Set up new thread’s stack as if it had saved its
state in switchframe
— “returns” to stub at base of stack to run func

Two Threads Call Yield

Thread 1's instructions

“return” from thread swibch
imker stub

call go

call thread yield

chisese amwsther thread

call thread swilch

save thread 1 state to TCB

load thread 2 state

refum from thread _geetch
refum from thread_yield
call thread_yiekd

chisese another thread
call thread_switch

Thread 2's instruchions

“return
inbo Shun

call go

call thread_yials

choose another thread

call thread pwitch

save thread 2 state to TCE

load thiread 1 state

troan thread swilch

Processor's instruchions

“return” from thread swilch
inte =tub

call go

call thread yield

chiose another thread

call thread swilch

savie thread 1 state to TCH

lnad thread 2 state

“return” from thread swilch
into Uk

call go

call thread_yield

chisose another thread

call thread_swiich

vt thread 2 state to TOCH

load thread 1 skate

returm from thread gaitch

return from theead yield

call thrasd_yiekd

chiose another thread

call thread_swilch

Involuntary Thread/Process Switch

* Timer or I/O interrupt

— Tells OS some other thread should run
» Simple version (0S/161)

— End of interrupt handler calls switch()

— When resumed, return from handler resumes
kernel thread or user process

— Thus, processor context is saved/restored twice
(once by interrupt handler, once by thread switch)

Faster Thread/Process Switch

 What happens on a timer (or other) interrupt?

— Interrupt handler saves state of interrupted
thread

— Decides to run a new thread

— Throw away current state of interrupt handler!
— Instead, set saved stack pointer to trapframe
— Restore state of new thread

— On resume, pops trapframe to restore interrupted
thread

Multithreaded User Processes (Take 1)

e User thread = kernel thread (Linux, MacQS)

— System calls for thread fork, join, exit (and lock,
unlock,...)

— Kernel does context switch

— Simple, but a lot of transitions between user and
kernel mode

Karmsal|

Multithreaded User Processes

(Take 1)

Ciodn Eerrsl Thraad 1 Kermel Thread 2 Kainel Theead 3 Procass 1 Proegs 2
5. E, 5 PCE | FCH F
Glabials TCE 1 | eza | | ez | [meeoe] [rcesm] | tcezal [mEzE]
Elaick Ehack Stack Stack Elack Elack Stack
wo | sl sl B L]] fod
Proa=ng 1 Progess §
Ugar-Leval Procasses Thraad & Theead B Theeas & Teresd B

505

5

)

| Mack | Slack | | Hlmch | Glack
Cade Codi
Clolials Glakials
Hema Heap

Multithreaded User Processes (Take 2)

e Green threads (early Java)

— User-level library, within a single-threaded
process

— Library does thread context switch

— Preemption via upcall/UNIX signal on timer
interrupt

— Use multiple processes for parallelism
* Shared memory region mapped into each process

Multithreaded User Processes (Take 3)

* Scheduler activations (Windows 8)
— Kernel allocates processors to user-level library
— Thread library implements context switch
— Thread library decides what thread to run next

* Upcall whenever kernel needs a user-level
scheduling decision
* Process assighed a hew processor
* Processor removed from process
e System call blocks in kernel

Question

* Compare event-driven programming with
multithreaded concurrency. Which is better in
which circumstances, and why?

